
State considered harmful
A proposal for a stateless laptop

Joanna Rutkowska

December 2015

State considered harmful

Version: 1.0

1

Contents

1 Introduction 4

2 State(-carrying) considered harmful 5

3 The Stateless Laptop 7
State-carrying elements on modern laptops 7
The SPI flash chip . 8
The Embedded Controller’s flash memory 10
The hard disk . 10
The trusted internal hard disk requirements 11
Other discrete elements . 12
Other modifications to the laptop . 12
The wireless devices . 12
The audio and camera devices . 13
Volatile memory quick wiping . 14
Putting it all together . 15

4 The Trusted Stick 17
Firmware Storage . 17
Disk Storage . 18
The variant with internal trusted disk 19
Self-destruct . 19

2

State considered harmful Contents

5 Addressing leaks through networking 21
Scenario 0: An air-gapped system (no network) 22
Scenario 1: A closed network of trusted peers 23
Scenario 2: Tor-ified or VPN-ed open Internet 24
Scenario 3: Unconstrained Internet access? 25

6 (Un)trusting firmware and the host OS 27
Firmware considerations . 27
Host OS considerations . 28
Reconsidering BIOS and ME (un)trusting? 28

7 Addressing Evil Maid Attacks 30

8 Select implementation considerations 32
SPI Flash emulation challenges . 32
Host OS implementation considerations 33
User partition encryption considerations 34
Temper-resistance considerations . 34

9 Alternative solutions? 36
ARM-based platforms? . 36
FPGA-based, true open source processors and platforms? 37

10 Summary 38

Credits 39

Contacting the author 40

References 41

3

Chapter 1

Introduction

Modern Intel x86-based endpoint systems, such as laptops, are plagued by a
number of security-related problems. Additionally, with the recent introduction
of Intel Management Engine (ME) microcontroller into all new Intel processors,
the trustworthiness of the Intel platform has been seriously questioned.
In a recently published paper [10] the author has presented an in-depth survey
of these topics. In this paper the author proposes what she believes might be a
reasonable, practical and relatively simple solution to most of the problems.
The main principle introduced below is the requirement for the laptop hardware
to be stateless, i.e. lacking any persistent storage. This includes it having no
firmware-carrying flash memory chips. All the state is to be kept on an external,
trusted device. This trusted device is envisioned to be of a small USB stick or
SD card form factor.
This clean separation of state-carrying vs. stateless silicon is, however, only one
of the requirements, itself not enough to address many of the problems discussed
in the article referenced above. There are a number of additional requirements:
for the endpoint (laptop) hardware, for the trusted “stick”, and for the host OS.
We discuss them in this paper.
The author thinks the solution proposed here is not limited to solving the Intel-
specific challenges and might be useful for other future platforms also.
Those readers who can’t help but think that the (Intel) x86 is an already a lost
battle, and that we should be moving to other architectures, are advised to have
a look at the end of the paper where such alternatives are quickly discussed, and
then. . . potentially jump back here to continue reading.

4

Chapter 2

State(-carrying) considered
harmful

There are several fundamental reasons why endpoint computing devices, such as
laptops, without clearly defined separation of state-carrying elements are prob-
lematic:

1. The presence of persistent storage intermixed with the hardware makes it
possible for the attacker to persist malware on the platform, without the
user to have any simple way of learning about it, nor removing it (e.g. via
OS re-installation).

2. This also allows dishonest vendors, such as the OEMs or shipping agents,
to deliver already infected hardware without the user being able to easily
find out. This also includes Evil Maid attacks, which might be executed
by other actors than vendors.

3. The malware, once installed on the platform somehow, is given places
where to store stolen secrets from the user. This is especially worrisome
in the context of disk encryption keys, which could be exfiltrated this way
even on air-gapped machines.1

4. Finally, these state-carrying elements make it possible to identify platforms
and ultimately their users, due to various personally identifiable informa-
tion, such as MAC addresses for WiFi or BT, which make the hardware
unique.

1In such cases the leaked keys would become readily available to whoever has seized the
laptop and has the keys to decrypt the backdoor-created data with the keys inside.

5

State considered harmful Chapter 2. State(-carrying) considered harmful

It’s worth stressing that modern computer architectures make it very hard, some-
times impossible, for the user to inspect what firmware has really been pro-
grammed into the flash memory on the platform2. This is especially true for
any so called tamper-proof chips. The use of such “secure” chips on endpoint
computing devices should be avoided at all cost (see also discussion at the end of
the paper). Any tamper-proof electronics on client systems should be considered
harmful to the user as they jeopardize any form of transparency or verification.

2Indeed, by merely asking a flash-hosting device, such as the SPI flash chip, or some other
u-controller such as one used on a NIC, to tell us what firmware it has inside, we can only get
as trustworthy a response as is the device itself, or worse even: as is the current firmware that
is used to serve our request. . . A classic chicken and egg problem.

6

Chapter 3

The Stateless Laptop

In this chapter a vision for the stateless laptop is described. The author believes
the clean separation of state introduced by these modification would be attractive
not just on current x86-based platforms, but also on any future platforms, be
they based on ARM or any other processor architectures.
Also discussed are additional modifications needed to make the laptop more
trustworthy, or to state it in a more direct way: much less of a threat to its user.

State-carrying elements on modern laptops

We start by identifying the state-carrying (persistence-carrying) elements on a
modern x86 laptop. These are:

1. The SPI flash chip carrying the BIOS, ME, and other firmware.

2. The Embedded Controller (EC), which is an OEM-specific microcontroller
(uC), and which requires its own flash memory, which might be either im-
plemented inside the uC itself or as a discrete chip on the board (potentially
shared with the SPI flash chip mentioned in the previous point).

3. Additional discrete devices, such as e.g. the WiFi or BT modules. Typically
they would contain their own flash memories to hold their own firmware.

4. Finally, there is the hard disk.1

1The disk should not be confused with the SATA controller, which is part of the processor
package on the latest Intel models.

7

State considered harmful Chapter 3. The Stateless Laptop

Notably the above list does not contain the processor package, which includes
the actual processor (CPU), and what was previously known as “the chipset”,
comprising the MCH (formerly the “northbridge”), and ICH/PCH (formerly the
“southbridge”). Indeed, it seems that none of the modern processors are being
equipped with flash-able memory. The reason for this seems to be resulting from
the limitation of the manufacturing technology as used for modern processors.
If it was otherwise, we would likely not see discrete SPI flash chips for holding of
the BIOS, ME, and other firmware on notebook motherboards anymore. . .
Although it’s worth mentioning that Intel processor packages still contain a resid-
ual form of persistent state storage: so called fuses. It’s unclear to the author if
it’s possible for the processor itself to blow its own fuses.2 Even if that was pos-
sible, however, it seems like the usefulness of this form of state storage would be
very limited to the attacker: it could potentially only be used once, and only for
storing very short secrets. Notably, it doesn’t seem it could be used for platform
re-infection.3

Because we don’t have any control over the processor package, i.e. we must
accept it the way it is, at least if we want to build an x86 laptop today, and also
because of the limitations mentioned above, we will treat the processor package
as a stateless element in the rest of this paper. Nevertheless, it would be desirable
if the processor vendors used such a technology for fuses implementation, as it
would not be possible for the processor itself to self-blow these.
Let us now discuss what we could potentially do about all the above mentioned
state-carrying elements.

The SPI flash chip

The platform’s firmware-carrying flash chip (the SPI flash as it’s often called)
presents the biggest challenge for us, the state-less laptop proponents. The SPI
flash chip is tasked with several crucial goals on modern Intel x86 laptops:

1. It provides the firmware to the Intel ME processor. Failure to do so would,
most likely, result in the platform shutdown.4

2More specifically: for either the instructions running on the host CPU, or those running
on the ME processor to blow the fuses.

3Although it could be used to implement reply-protection for hypothetical CPU-based back-
doors, as discussed in [9].

4While there is no clear officially statement in the Intel platform specs about this, it’s
considered a tribal knowledge among many experts.

8

State considered harmful Chapter 3. The Stateless Laptop

2. It provides the BIOS firmware. Failure to provide a valid BIOS firmware
would render the platform un-bootable.

3. It provides the firmware to some of the integrated devices, such as Ethernet
network controller, potentially also other devices. Also, it might provide
some of the crucial personally identifiable information, such as the MAC
address(es) to be used by the networking device(s).

4. Additionally, the flash chip serves as a storage space for various persistent
platform configuration settings, for both the BIOS as well as the Intel ME.

The general idea is to remove the SPI flash chip from the motherboard, and route
the wiring to one of the external ports, such as either a standard SD or a USB
port, or perhaps even to a custom connector5. A Trusted Stick (discussed in the
next chapter) would be then plugged into this port before the platform boots,
and would be delivering all the required firmware requested by the processor, as
well as other firmware and, optionally, all the software for the platform.
One problem is that when the system wants to read the ME or the BIOS firmware,
none of the devices, not even the DRAM memory is initialized at this stage. This
means we cannot use e.g. a USB controller, and consequently a USB “stick” easily
to provide the firmware at this stage. What we can do, however, is to reuse
some of the pins in a USB port for the purpose of passing the SPI connections
to our Trusted Stick. Ideally these could be multiplexed with original USB port
connections, so that after the platform boot is complete, the USB port could be
used as a fully featured USB port.6

In either case, the goal is to relocate the SPI flash element from the motherboard
– where it cannot be neither properly protected (e.g. against software-based
reflashing attacks, or physical Evil Maid attacks), nor reliably verified by the
user. By relocating it to the Trusted Stick, we

1. provide a reliable way to enforce read-only property of the (select) firmware
partitions,

2. allow the user to reliably inspect its content, perhaps using some other
(more trusted) machine,

5While use of a custom connector might increase the cost of manufacturing of a Stateless
Laptop, it might have some advantages related to usability (clear indication to the user where
to plug the Trusted Stick), and messaging (“This laptop is supposed to be implementing the
stateless laptop standard”).

6Without dynamic multiplexing of these extra signals, we would need to downgrade a USB
3.0 port to USB 2.0, as we would likely need to use the 4 “Super Speed” signals to pipe SPI
over them.

9

State considered harmful Chapter 3. The Stateless Laptop

3. also allow the user to reliably write content to the stick (e.g. an image for
a trustworthy BIOS the user decides to use).

The Embedded Controller’s flash memory

The Embedded Controller (which should not be confused with Intel ME) is a
little auxiliary, discrete, microcontroller connected through an LPC bus to the
chipset. It is responsible for 1) keyboard operation, 2) thermal management, 3)
battery charging control and 4) various other OEM-specific things, such as LEDs,
custom switches, etc. More discussion about how this uC might be compromising
platform’s safety has been provided in [10].
In this paper, however, we’re more concerned with the fact that the uC that
is used to implement EC would typically also contain an internal flash memory
(e.g. see [5]), yielding it a state-carrying element on the platform, something we
would like to avoid.7

We thus would like to use a uC without a built-in flash-able memory, one that
expects the firmware for execution to be provided by an external chip. One
example of such a chip is the one used by the OLPC and Purism laptops [7].

The hard disk

The internal hard disk is an obvious device which is capable of storing the state.
In fact this is the very reason disks are made.
What might be less obvious though, is that disks typically contain their own uC
with their own internal flash-able memory. This naturally breaks the stateless
requirement for the platform even further. . .
Also, due to potentially backdoored firmware, or just due to how modern solid-
state disks work (wear-leveling mechanisms), some information stored directly on
the disk by malware (such as the stolen user disk encryption key) might not be
easy for the user to wipe using traditional disk shredding methods.

7Admittedly the EC, no matter how evil firmware it executes, would not be able to interfere
with the platform boot sequence, and thus would not be able to compromise the system or
any other software execution directly. However, as already discussed in [10], the EC might
pull out a few other, more subtle attacks, such as e.g. injecting keystrokes that could trigger
some actions that might also be fatal. Or, as one of the reviewers noted, might pretend the
system is off when it really is not, which might be problematic e.g. when switching between
supposedly separate boot environments, or trying to prevent potential Cold Boot attacks.

10

State considered harmful Chapter 3. The Stateless Laptop

There are two ways how to solve the above problems:

1. Get rid of the hard disk, and rely on external storage only (perhaps also
implemented on the Trusted Stick) connected e.g. through USB or SD
protocols. Of course this solution is neither elegant nor convenient. Also
an internal disk will always excel in terms of speed and capacity for a given
cost.

2. Use an internal disk with trusted firmware satisfying the requirements dis-
cussed in the next section.

The trusted internal hard disk requirements

The first requirement for using an internal disk would be for it be flash-less, of
course. The disk uC would need to obtain its firmware from the trusted stick,
just like the EC described above is expected to do that.
Additionally, the firmware that would power the disk would need to be trusted
(this is in contrast to e.g. the ME firmware which we do not assume to be
trusted!). Trusted, to do a few things:

1. Implement reliable read-only protection for select partitions on the disk
(e.g. those containing the /boot and root filesystems),

2. Implement reliable transparent encryption for anything that is ever written
to the disk. In other words make it impossible (e.g. for the malware in
the ME or on the host) to store anything on the disk that would not be
encrypted with a user controllable key. This requirement has an added
advantage that wiping of all the user data on the disk can be implemented
by simply throwing away the encryption key, something that could be done
very quickly and easily.

The above requirements demand, in practice, the disk hardware to be of open-
hardware design, running open-firmware. Fortunately it appears significant work
has already been made in this area [15], which should be a good starting point.
It should be reiterated here the requirement for the trusted internal disk is an
optional one, and it is envisioned that meanwhile an external disk could used,
ideally integrated into the Trusted Stick.

11

State considered harmful Chapter 3. The Stateless Laptop

Other discrete elements

Occasionally there might be additional discrete devices on the laptop, such as a
discrete GPU. Such devices will likely come with their own internal flash memory,
thus breaking the stateless principle. In most cases these discrete devices would
also be bus-mastering devices (capable of issuing DMA to host memory), which
means they could not only be used as a secret storage, but also interfere with the
platform boot process if it is not properly secured against DMA from devices.8

It’s thus best to ensure no discrete devices are present on the laptop, especially
no discrete GPUs. We talk more about the discrete wireless cards, such as WiFi
and cellular modem, below.9

Other modifications to the laptop

In addition to removing persistent state-carrying elements from the laptop, there
are also a few other minor, yet important, modifications that are needed to assure
the laptop is not harmful to the user. We discuss these below.

The wireless devices

All the wireless devices (WiFi, BT, 3G/LTE modems, etc.) deserve special con-
sideration (even if they do not have their own flash memory) because they provide
a very convenient way for the malware that runs on the platform (e.g. in the ME
or SMM, or even on the host OS) to leak information using a wireless channel
(so, a channel very difficult to block or notice). This could happen irrespectively
of whether the user decided to consciously enable and use the actual device or
not (e.g. turned on WiFi in the host OS and connected to a WiFi network).
Additionally any wireless device could be used to gather information about the
user surroundings, such as e.g. the list of active WiFi networks (SSIDs) or BT
devices MAC addresses.

8The author is not aware of any BIOS implementation that would actively try to protect
itself against potential DMA attacks originating from devices during boot, especially early
boot.

9One of the reviewers also pointed to battery as a potential element containing embedded
microcontroller with its own flash memory. Needless to say such “smart batteries” should
be avoided and all the charging/monitoring logic implemented by the EC, or using “dumb”
electronics without persistent state storage.

12

State considered harmful Chapter 3. The Stateless Laptop

Admittedly though, most such exfiltration channels would require the attacker to
be physically close to the user’s laptop, so for some of the users this might not
be a realistic threat10. Notably with one exception – if the malware managed to
interpose on legitimate traffic generated by the user, e.g. by finding and modifying
network buffers in the host memory, it might then easily leak the stolen secrets
at least to the user’s ISP, or with some luck, to whatever server on the Internet
the user chose to establish connection with. We discuss this problem as well as
potential countermeasures later in this paper.
Similarly not every user would be concerned about their physical location being
leaked (through the information sniffed by the wireless devices). But for those
who care, a mechanism is needed to prevent this from happening.
The easiest way to address all the above mentioned problems is to fit a physical
kill switch for each (or all) of the wireless devices. Care should be taken for the
switch(es) to control the actual power supply wires to the devices, rather than
merely asking the devices to disable themselves, a request which a malicious
device (or one with an infected firmware) might simply ignore.
Of course physical kill switches are not an elegant solution, as in most cases
the user would like to have some form of wireless connectivity. After all there
is a reason we want to have these networking devices in the first place. . . As
mentioned we will consider this problem in more details later in this paper. For
now suffice to say that it would be beneficial to either: 1) not have any internal
WiFi or BT card, or 2) a simple networking proxy implemented on an external
(trusted) uC, not directly connected to the host processor.
It should be pointed out for completeness, that a GPS receiver (if fitted to the
laptop), while a one-way radio device, should also be fitted with a kill switch, for
the reasons discussed above.

The audio and camera devices

The audio and video (camera) devices can compromise user’s privacy similarly to
the above discussed wireless devices. In addition to the obvious threats posed by
these devices, it’s perhaps worth mentioning a possibility of using the mic and
the camera not only to sniff the conversations in the room where the laptop is
kept, but also to allow the attacker to sniff the user’s disk and login password.
Also, it seems possible, in theory at least, for the malware to use the speakers to

10Although the adversary might use e.g. the user’s phone as a relaying device

13

State considered harmful Chapter 3. The Stateless Laptop

communicate with other devices (such as the user’s phone or even an internet-
connected TV) in order to exfiltrate some low-bandwidth information (e.g. the
disk decryption key stolen from the host DRAM page or registers).
For this reason it seems only reasonably to put all the audio and video devices
behind physical kill switches, just like it was recommended for all the wireless
ones. Again it should be stressed the physical switches should be cutting the
actual power or signal lines to the devices, accounting for potentially misbehaving
ones.

Volatile memory quick wiping

Finally, one additional aspect of building a stateless laptop is to account for
all the state accumulated in the volatile memory, specifically DRAM and the
processor internal SRAM used by the ME. Even though we’re talking about
volatile memory, it’s a well know fact that residual information might remain
there for a surprisingly long time [6]. Additionally, the ME internal memory
(SRAM) is believed to remain to be sustained despite platform normal shutdown
state, as the ME is still in operation, albeit it might be in sleep mode (again, the
platform does not need to be in e.g. S3 for this).
Thus a mechanism is needed to ensure, upon user’s request, a reliable and quick
clearing of all the volatile memories fitted on the platform. This might be the
default behaviour every time the platform is going to be shutdown for hibernation.
One of the reviewers suggested short-circuiting Vcc with GND pins might do the
trick for the processor and DRAM.

14

State considered harmful Chapter 3. The Stateless Laptop

Putting it all together

The diagram below wraps up our discussion so far:

+---+
| +--------+ +-----+ |
| | HDD |<----SPI(?)-| SPI | |
| +--------+ | MUX | |
| | USB/PCIe/ | | | +---------------+
| | SATA | |<---| Trusted Stick |
| +-----------+ | | | +---------------+
| | Processor |<----SPI----| | |
| | Chip | | | |
| +-----------+ +-----+ |

((+)) | USB| | LPC | |
| | +------+ | | | |
| | | WiFi | USB +------+ | |
+------| |-----| EC |<----SPI------+ |

| +------+ +------+ |
+---+

Fig 1. The stateless laptop with trusted internal disk and network proxy.

A new element introduced on the above diagram is the “SPI MUX” box. It’s a
multiplexer for the SPI buses coming from different devices, which are normally
expecting to be the only ones talking to the SPI flash chip. It should be possible
to implement this using an FPGA (for a prototype) or an inexpensive ASIC (for
production models).
The next diagram shows a simplified laptop: without trusted internal disk (im-
plemented according to the requirements laid out above), and also without net-
working proxy (as discussed later), but rather using an external USB-connected
WiFi device.

15

State considered harmful Chapter 3. The Stateless Laptop

+-----+
| SD/ |
| USB |
\-----+ USB/SD

|
| : :

+---------------|-:-----------------------+ :
| | : +-----+ | :
| | : | SPI | | :
| | : | MUX | | :
| | : | | | +---------------+
| v V | |<---| Trusted Stick |
| +-----------+ | | | +---------------+
	Processor	<----SPI----		
+--	Chip			
	+-----------+ +-----+			

((+)) | | | LPC | |
| +------+ | | | |
| | | | +------+ | |
+-| USB |-+ | EC |<----SPI------+ |

+------+ +------+ |
+---+

Fig 2. The simplified stateless laptop (no internal disk, USB WiFI)

It might also be possible to use a microcontroller with one-time-programmable
(OTP) memory in order to avoid the need to do the SPI multiplexing, and so to
further simplify the construction of the laptop and the Trusted Stick. While an
OTP would not provide state persistence, it would still be a sub-optimal solution
because the user would (likely) not be able to inspect the firmware, or load one
the they want.

16

Chapter 4

The Trusted Stick

The Trusted Stick, a small device of a “USB stick” or an SD card form factor,
is an element that the user always carries with themselves and which contains
all the “state” for the platform. This includes the (encrypted) user files and
platform configuration. It also is expected to carry all the software and – what is
unique as of today – firmware for the platform, and also enforce read-only’iness
of these.1

As the name suggests, it is assumed the device is to be trusted. In other words,
should this device malfunction (due to a bug in its own firmware), or get com-
promised by the attacker somehow, the security of the user data is in jeopardy.
It is thus expected this device should be as simple as possible to assure it’s
reasonably secure, and also to make it possible for various vendors, ideally by
users themselves, to be able to build it. It goes without saying the device should
be an open-source, open-hardware device. The author believes there is no excuse
for entrusting proprietary products with such important things as ones digital life.
We are now considering what functionality should the Trusted Stick implement.

Firmware Storage

First of all it should provide read-only (from the host perspective at least) storage
for all the platform firmware. This includes the Intel ME, the BIOS (including
any blobs it might depend on, such as the FSP, ACMs, etc.), any of the standard

1A mechanism for updating the software and firmware on the stick should be explicitly
under the control of the user. One can easily imagine this to be implemented using a physical
switch on the stick, i.e. something that software could not be able to interfere with.

17

State considered harmful Chapter 4. The Trusted Stick

integrated devices firmware (e.g. the GbE firmware), as well as firmware for the
OEM-specific Embedded Controller, and potentially other devices, such as the
already discussed (optional) internal disk, and perhaps any discrete networking
devices.
The above (read-only) firmware storage should cover also any platform configu-
ration. Typically the BIOS, ME, and potentially other devices would want to use
some parts of the flash partitions to store their own configuration (e.g. which
devices to boot from, the MAC address, etc).
It should be stressed that all this firmware should be exposed to the platform
(e.g. to the host processor or the EC u-controller) using the standard protocols
that would normally be used to fetch the firmware. In most cases this is the SPI
protocol.

Disk Storage

In addition to playing the role of a firmware storage (in practice: an SPI flash
device), the Trusted Stick might also act as a normal mass storage device, seen
by the host as e.g. a USB mass storage device, or an SD card.
Here we should further distinguish between two types of storage that is going to
be exposed to the platform (the same applies also in the scenario with an internal
trusted disk):

1. A read-only non-encrypted storage containing the system code (i.e. the
bootloader, the boot partition, and the root filesystem),

2. A writeable (but encrypted) partition for the user files (i.e. the home direc-
tory and perhaps some additional system configuration). The key for the
encryption could be derived from: 1) the user provided passphrase (pro-
vided via keyboard), optionally combined with: 2) a TPM-released secret
which can be used, to some extent, to prevent laptop-replacing Evil Maid
attacks (which we discuss at the end of this paper in more detail), 3) and
also a secret generated by the Trusted Stick and subject to wiping in case
the user requested secure deletion of all user-specific data.

It should be noted that it might not be possible to obtain the user passphrase
using the standard keyboard during early phase of the platform boot. It is not
expected this to be necessary because all the early boot firmware should not be
encrypted, but only read-only protected by the Trusted Stick. However, in case

18

State considered harmful Chapter 4. The Trusted Stick

it turned out that e.g. Intel ME refused to run having only read-only access to its
flash partition, then we might need to encrypt the flash partitions on the Trusted
Stick holding this early boot firmware. More on this at the end of the paper.
An alert user might be wondering what a TPM device is doing on a stateless
laptop? After all the TPM has its own non-volatile memory, doesn’t it? In-
terestingly on the recent Intel platforms the TPM has been integrated into the
processor package (it’s in fact an application running on the ME processor), and
so it uses the system’s SPI flash memory as its own non-volatile storage. Of
course everything that is written there is encrypted with a key that is tamper-
proof protected inside the processor, so the mere fact the attacker is able to
read the SPI flash content with an external programmer does not compromise
safety of this TPM’s storage. While it hasn’t been confirmed experimentally if
such a processor-internal TPM would work with a read-only storage exposed by
the Trusted Stick, it seems plausible to expect it should2. Of course the user
would be expected to let the TPM write its generated keys during the platform
initialization, by operating the read-protect switch on the Trusted Stick.

The variant with internal trusted disk

As already discussed earlier, assuming a trusted, open implementation of an
internal hard disk was available, then the stick would not need to act as (fast)
storage. It would only have to provide the decryption key to the (trusted) internal
disk device.3

The primary benefit in this case would be the simplification of the stick: no
need to fit high-capacity, high-performance flash memory. Depending on the
application this could be an important benefit.

Self-destruct

Optionally, at least for some groups of users, it might be desirable for the Trusted
Stick to implement quick and reliable wiping of its content, especially of the
user partition.4 This should be easily implemented by securely erasing just the

2And in case it didn’t work with a read-only flash, we might still be able to use it with an
encrypted writeable flash, as discussed later in the paper

3Potentially it might also be providing the /boot partition, although the benefit of this is
unclear.

4Although, there might be scenarios extending this requirement also for other partitions,
i.e. these holding the firmware and system image.

19

State considered harmful Chapter 4. The Trusted Stick

encryption key, for which even a small battery or perhaps even a capacitor should
be enough.

20

Chapter 5

Addressing leaks through
networking

Assuming the platform might be compromised with sophisticated rootkits,
e.g. running in SMM or ME, that are actively trying to steal e.g. GPG private
keys from the host memory, it is important to ensure the malware cannot leak
the data using networking. It should be realized that for malware running in
ME or SMM it might be possible to leak data using networking irrespectively
of what specific networking hardware is in use by the host OS. It should be
just enough for the malware to (asynchronously) find pages containing what
looks like specific data structures (e.g. Linux sk_buff structures) and modify
just a few fields there in order to implement some form of covert channel for
exfiltration (see e.g.[8]).
On the other hand, such advanced malware (e.g. especially when running in
the ME) might be reluctant to (somehow blindly) modify outgoing networking
packets without fully understanding the bigger picture of the specifics of the
environment and the user setup. This is because such modifications might easily
be detected by more inquisitive users or admins, using more or less standard
network analysis tools, risking detection of the malware. Again, for malware
located that deep in the hardware, in the processor itself, this might not be
acceptable. Nevertheless, let’s discuss what we could do to prevent such leaks
anyway. We will do that starting from the simplified scenario of an air-gapped
system, then move on to increasingly more connected scenarios.

21

State considered harmful Chapter 5. Addressing leaks through networking

Scenario 0: An air-gapped system (no network)

Contrary to what it might seem at first sight, the mere fact that we are keeping
the laptop not connected to any network does not automatically make it a truly
air-gapped system! If there is malware on the laptop it can still establish com-
munication with the outside world through a number of channels: it might use
the existing WiFi or BT, or LTE/3G devices to send packets to other attacker-
controlled devices1, ostensibly without connecting to any network. It might even
use more exotic means of establishing covert channels, such as the audio spec-
trum using the built-in speakers, as mentioned previously in this document.
Also, even if the system is not yet compromised (i.e. no malware or backdoors
running on it yet), it might get compromised when devices such as WiFi or BT
are exposed to the environment and are processing the (untrusted) input “from
the air” around the laptop.2

Thus to keep the laptop truly air-gapped one must ensure access to all these
devices is forbidden, and not just to the host OS, but also to any of the hardware
on the platform, including the processor. The physical kill switches seem to be a
reliable way for guaranteeing this, as discussed previously. Obviously, assuming
such kill switches have been fitted (and set to the “off” positions), and assuming
that the stateless laptop is indeed lacking any persistent memory, and that even
if the ME (or any other rootkit) managed to steal any of the user data, it would
not be able to leak them anyway.3

A truly world-disconnected computer is of very limited use, however. In practice
we would like to transfer some files from/to such an air-gapped system. One
popular approach is to use a USB storage device (stick) for that purpose. Such an
approach, however, exposes the air-gapped computer to potential infections when
its host OS is processing the device, volume, and filesystem metadata brought
by this device. Additionally, and more importantly, a potential backdoor, e.g. in
the ME, might now dump all the previously stolen data onto the stick (and these
blobs might now not be easy discoverable by the user, thanks to e.g. the wear
levelling mechanisms used on the stick, or potentially backdoored firmware on
the said USB device).
A better approach is to use physically read-only media, such as DVD-R. While
such a medium can still bring infection to the air-gapped system, it wouldn’t be

1Which might be the user phone or Smart TV, for example.
2This is especially true if the host OS does not explicitly try to sandbox the devices, drivers,

and corresponding stacks, which is often the case.
3One reviewer pointed the malware might try to e.g. modulate CPU usage, thus indirectly

trying to leaking the data via electro-magnetic field. . .

22

State considered harmful Chapter 5. Addressing leaks through networking

possible to use it to exfiltrate the stolen data4. Of course, this would result in a
“black-hole” use model – the air-gapped system can only accept files from the
outside world, but never give anything back to the universe – again, possibly a
sub-optimal use of computer technology. . .

Scenario 1: A closed network of trusted peers

Now, let’s consider a closed network of trusted peers who would like to commu-
nicate securely with each other, also exchanging files.5 Of course the humankind
has researched this problem extensively over the last couple of decades, which
resulted in an abundance of cryptographic protocols allowing to build secure
tunnels over insecure networks.
However, assuming a rootkit running in the ME or SMM, we’re suddenly facing
a significantly more difficult challenge. This is because the ME might be now
piggybacking stolen information (such as the session keys for the crypto tunnels
we’re trying to build) on the existing network packets, allowing an adversary –
who e.g. controls the user’s ISP – to receive them on a plate.
In order to prevent this from happening we need to move the actual networking
device away from the jurisdiction of the ME and the host processor. It seems
convenient, at first thought, to place the networking device on the Trusted Stick.
Indeed, if the trusted module was implemented as a USB-pluggable device then
it would be able to provide emulated Ethernet device to the host. The Trusted
Stick would then perform simple tunneling to establish the virtual trusted network
with other peers (hopefully using also similarly designed laptops). This way, even
if a hypothetical ME rootkit was trying to leak some information over networking,
this would get encapsulated into the encrypted tunnel, which only the trusted
peers were able to see.6

Implementing Ethernet-emulation and networking proxy on the Trusted Stick has
several disadvantages though:

1. It complicates the Trusted Stick design, increasing its cost, as well as its
4Although one should remember the DVD-R driver will likely be fitted with its own uC

featuring its own flash memory, which might be a good candidate for malware to store stolen
secrets to.

5Again, this means, by definition, that any of these “trusted peers” is able to compromise
the whole network.

6Admittedly, as several reviewers noted, the rootkit might try to leak the stolen keys by
interfering with the timings of packet transmissions, or using some other sophisticated side-
channel attack. . .

23

State considered harmful Chapter 5. Addressing leaks through networking

size (which is an important factor given the stick is assumed to be carried
by the user with themselves all the time, perhaps in a form of a necklace,
or maybe even a ring in the future).

2. Even more importantly: it significantly enlarges the attack surface on this
trusted device. Admittedly the uC used for networking proxy implementa-
tion might be a physically different one than the chip used for SPI firmware
exposure, although this would now complicate the host-stick interface, in
addition to further increasing the cost and size.

However, just as we discussed the use of a stateless internal disk (which runs a
trusted firmware from the stick), we could similarly envision a simple networking
proxy implemented using a stateless (i.e. flash-less) uC, which would then connect
to a traditional WiFi card. The WiFi, however, would not be directly connected
to the host CPU.
Incidentally we have already outlined the need for a stateless uC on the laptop –
this is to implement the Embedded Controller. It seems thus logical to use this
same uC for both realization of the EC as well as for the (trusted) networking
proxy.
Obviously it would take time to write firmware implementing the envisioned proxy,
and before this one is ready, a temporary solution could be to use an external,
USB-connected or Ethernet-connected network proxy (similar in nature to e.g.
[13]).

Scenario 2: Tor-ified or VPN-ed open Internet

Let’s now consider the traditional scenario in which the user wants to interact
with any computer on the Internet, whether trusted or not.
In this scenario we would also like to use the previously discussed networking tun-
neling proxy. Of course at some point the tunnel would need to be terminated
and the user connection will now be visible to some 3rd party Internet infrastruc-
ture, including the final 3rd party server (e.g. a cat-photo-serving website the
user might be addicted to). The termination of the tunnel would take place at a
VPN service provider (which we assume to be a trusted service provider for the
user), or at a Tor exit node (which itself is not assumed to be trusted, but the
Tor network, as a whole, should be in that case).
Now, assuming the malware has modified the content of the user-generated
packets high enough (OSI-layer wise), such as e.g. modified some of the HTTP(s)

24

State considered harmful Chapter 5. Addressing leaks through networking

headers or data payloads, the 3rd party infrastructure or the final server would
be able to read any potentially covertly transmitted data from the compromised
machine.
But the attacker (who controls the cat-pictures service server), even though
receiving some of the user sensitive data, e.g. disk encryption key, might not
be able to figure out which user do they belong to. Of course the user might
have plenty of identifiable information on their laptop, and the malware might
be smart enough to search around for them and include them with the blobs sent
over the covert channel. Theoretically, if the user was careful enough this might
not be the case, but in reality expecting the user to be so careful with regards
to all of the activity performed on their laptop, might be unacceptable for most
users.
Typically users would be willing to be careful only with regards to some of the
domains, while would like to “live a normal life” in others. Operating systems
such as Qubes OS [16] try to resolve this problem by using Virtual Machine-based
compartmentalization. Sadly in case of malware operating in the ME or SMM7

the Virtual Machine technology (even augmented by technology such as Intel
VT-x and VT-d) is of little help.8

On the other hand, forcing the attacker’s malware to modify only high-level
protocol payloads to leak data might already be considered a significant win.
The higher protocol the attacker needs to intercept, the higher the complexity of
the malware, which increases the probability of getting caught by curious users
or administrators.
In addition the attacker has little control over which servers or infrastructure she
should control in order to be able to receive stolen data from a given user.

Scenario 3: Unconstrained Internet access?

Not every user would like to forward all their networking through Tor or even a
fast VPN gateway. The primary reason not to do that might be the limitation
on the bandwidth and latency imposed by such proxies.

7Although systems that properly use compartmentalization might make it very hard for the
SMM to ever get infected. On the other hand, they can do nothing against the backdoors
built in by vendors right from start.

8Admittedly Intel VT-x allows for SMM sandboxing using Dual Monitor Mode, although in
practice there seem to be lots of problems with this approach, as the author has discussed in
[10].

25

State considered harmful Chapter 5. Addressing leaks through networking

A user might typically want to use such proxies for only some of their activities
(say to follow the news surrounding anti-government protests), while still enjoying
“un-handicapped” Internet for other activities (such as watching full HD cat
movies).
The problem with such an approach, again, is that the potential malware might
choose to piggyback the stolen information onto the innocent traffic.
About the only one left solution here would be to keep an eye on the traffic
generated by the user. The adversary knowing that the user might be closely
monitoring their traffic should be reluctant to (somehow blindly) piggyback a
covert channel on top of it, afraid of getting caught. Thus, it would seem more
reasonable for the adversary to target higher-level protocols also in this scenario,
facing also the same problems as discussed in the previous section.

26

Chapter 6

(Un)trusting firmware and the
host OS

Firmware considerations

We would like to treat most of the platform firmware as untrusted. This applies
to the Intel ME, other devices, and the BIOS. While it should be obvious why
Intel ME should be considered untrusted, it’s also prudent to treat the BIOS as
untrusted even if we decided to use an open-source implementation, such as core-
boot [14]. This is because the task of creating a truly secure, i.e. attack-resistant,
BIOS implementation for Intel x86 platform seems like a very challenging task.
Not to mention that it is currently very difficult (impossible?) to have a truly
open source BIOS which would not need to execute Intel-provided blobs such as
the Intel FSP.
The trick of keeping the platform’s firmware on the trusted stick is a game-
changer here, because we can be reasonably confident the stick will: 1) imple-
ment proper read-only protection, this way stopping any potential flash-persisting
attacks originating from the platform, and 2) even if the firmware was to be
somehow malicious, the construction of our stateless laptop leaves no places for
the malware to store any data stolen from the user. (It could still try to leak
it through networking, a problem we discussed in more detail in the previous
chapter.)
There are two important exceptions with regard to trusting the firmware though:

1. If we decided to use an internal disk, as discussed earlier, then we would
need to trust the disk’s firmware to properly implement encryption, and
read-only protection for select sectors/partitions,

27

State considered harmful Chapter 6. (Un)trusting firmware and the host OS

2. If we decided to use the Embedded Controller (again, let’s not confuse this
with the Intel ME) to implement internal networking proxy (as discussed
below), then we would need to trust its firmware also.

Of course, as already discussed, both of these devices would be fetching the
firmware from the Trusted Stick.

Host OS considerations

It’s tempting to also assume the host OS could be treated as untrusted, using
the similar argumentation we just used to convince ourselves we didn’t need to
trust Intel ME or the BIOS. . .
Indeed, at least for the networking scenarios #0 (air-gap) and #1 (closed network
of trusted peers), as discussed in the previous chapter, that might indeed be a
justified assumption.
However, for the more open networking scenarios #2 and #3, this might no
longer be the case. Indeed, an insecure OS might allow malware infections that
could now use all the convenience of a locally-executing program to steal user
data, collect additional personal identifying information, and exfiltrate all this
to some remote server using one of the million of ways how modern malware
typically would do that. This would naturally lower the bar for the adversary
significantly, almost negating the benefits of a stateless laptop. . .
This means it is still prudent to run a secure OS on the stateless laptop.

Reconsidering BIOS and ME (un)trusting?

An alert user might, however, now point out that we cannot assume the host
OS to provide any security if we don’t trust the BIOS, or ME. In theory this is
true, of course. In practice, however, we should consider how a malicious ME or
BIOS could potentially inject malware into our (otherwise secure) host OS.
The only way for such an infection to occur would be either for the Intel ME,
or the BIOS, to inject malware into the host memory. In practice this means
that Intel would release a processor which, under certain circumstances (yet not
depending on any persistent state) writes malware to the host memory pages.

28

State considered harmful Chapter 6. (Un)trusting firmware and the host OS

Alternatively this might have been done by the Intel FSP blob.1.
The author believe such a move would be extremely risky for a vendor like Intel.
Again, we should remember that such malware insertion (by either the processor
or FSP blob) could not be conditioned on any persistent state, and so would
be subject to reply “attack”. In other words, once the processor or the FSP got
caught while pulling this off, it should be possible for the user to reproduce and
demonstrate this malicious behaviour arbitrary number of times subsequently.
Of course, Intel ME, or a malicious SMM, instead of injecting malware into
the host memory, might chose a more subtle approach and instead only expose
a privilege escalation backdoor which could then be used by some malware to
undermine security isolation offered by the host OS.2

Again, by using a largely open source BIOS implementation we can practically
rule out such a backdoor in an SMM3. This leaves us with the possibility of the
Intel ME providing this hidden escalation trap. That, however, is something that
a processor vendor might always do trivially, without introducing technology such
as Intel ME, as discussed e.g. in [9]. In that case, again, our only hope is that
Intel would not risk being caught red-handed, given the hypothetical backdoor
would need to be stateless.
We thus see that, while we cannot fully eliminate the problem of subversion of
the host OS security by potentially malicious processor, the construction of the
stateless laptop allows us to force the adversary into a very dangerous territory,
requiring them to take high risk and also making the attack very complex.
It’s worth nothing, however, how we have silently started assuming that we need
to have a largely open source BIOS (so largely trustworthy), even on our stateless
laptop. Needless to say, the coreboot project [14] is a natural candidate for such
a BIOS, and we are very lucky there is such a project in the wild already.

1Here we assume a mostly open source BIOS has been used. Such a BIOS will still likely
need to execute the Intel FSP blob, and this blob would be the only place which might inject
the malware

2E.g. the backdoor might allow to escape a virtual machine, allowing some more-or-less
standard malware which came through some standard channels, such as an email attachment,
and which would otherwise be contained to some untrusted VM, to now spread over the whole
system.

3Indeed, it’s hardly imaginable for the FSP blob to bring such a backdoor into the SMM.

29

Chapter 7

Addressing Evil Maid Attacks

Originally the term Evil Maid Attack [11] was used to describe attacks on the
full disk encryption schemes. In such scenarios the attacker (the Evil Maid) was
replacing or infecting part of the code which was asking the user for the disk
decryption passphrase. Once the passphrase was obtained from the unsuspect-
ing user (who thought they provided it to the legitimate system software), the
malicious code could have store it somewhere (e.g. save on unused disk sectors),
or leak through networking, allowing the attacker to decrypt the laptop once the
attacker somehow got access to it subsequently (e.g. after physically stealing it
from the user, or perhaps covertly making a copy of the hard disk).
But the old Evil Maid Attack concept can be easily generalized and applied to
the stateless laptop scenario. Now the Evil Maid would be replacing the whole
laptop, rather than just the software on it (because there is no software to be
replaced on the laptop in this case, of course). The new, fake, laptop would
look identical to the user from the outside, but might be a completely different
machine on the inside. E.g. it might be full of persistent memory, and also
feature an army of wireless devices to leak all the user secrets to everybody in a
radius of miles.
A special case of such an Evil Maid attack would be when the laptop was replaced
during shipment, or simply if the vendor of the laptop turned out to be (or was
forced to be) malicious.
What could we do about such attacks?
First, we should stress the primary reason behind introducing the stateless laptop
idea is not to prevent sophisticated physical attacks, such as “full” Evil Maid
attacks which replace the whole laptop with an identically-looking one.
Having said that, the author is of the opinion that the stateless laptop design

30

State considered harmful Chapter 7. Addressing Evil Maid Attacks

makes lots of physical attacks difficult, or simply not feasible. This applies to the
“classic” Evil Maid attacks, as well as various attacks targeting the firmware.
Still, in order to somehow address (or increase the cost significantly) of the
full laptop-replacing Evil Maid attacks, one can think of several solutions which
include traditional physical-based protection applied to the laptop, when it is
being left unattended by the user. These are things such as custom, personalized
stickers, which make it more difficult to bring an identically looking laptop, as
well as more classic means in a form of a vault or strong box, or a monitoring
camera.
An inquisitive reader might wonder why would we need all this hassle with state-
less laptops, if the user was expected to implement the physical protection, any-
way? As already mentioned several times in this paper, there are many more
problems with x86 platform, and which we try to resolve with the stateless laptop,
than just the physical attacks. Such other problems include: software attacks on
firmware, malicious firmware (backdoored by the vendor, or somewhere during
the shipment), software attacks against secure boot mechanisms. A reader is,
again, directed to the [10] for a more complete discussion.
The physical protections mentioned above do not, however, resolve the problem
of the attackers subverting the laptop hardware at manufacturing or shipment
stages. This includes, naturally, a potentially conspiring laptop vendor.
In order to address this latter problem we – the industry – need to come up
with reliable and simple methods for comparing PCBs with each other. A tool
analogical to ‘diff’, only working for PCBs rather than on files. Such a tool,
implemented as a software, could e.g. take two (sets of) photos taken by the
user of the two boards to compare. The photos might be taken with an ordinary
camera, or, in a more sophisticated setup, using X-ray imaging to reveal also the
internal layer wiring. This inititive has already been proposed by other researchers
recently (e.g. [3]), so it is not unreasonable to expect some progress in this area
in the near future.
Admittedly such an approach would not be able to detect sophisticated attacks
which replace the original laptop board with identically looking one (connection-
and chip-geometry-wise), yet with different chips. The author thinks that such
attacks might be very difficult to pull off in practice, probably extremely pricey
due to the need of manufacturing small series of custom integrated circuits.

31

Chapter 8

Select implementation
considerations

Here we briefly list some of the potential challenges and some other aspects that
are still left open for further discussion and research.

SPI Flash emulation challenges

One anticipated complication for emulation of the SPI flash by the trusted stick
is that the processor (chipset) expects the specific timings to be met by the SPI
chip when reading firmware, so it’s unlikely one could use a general-purpose uC
on the stick to emulate the flash chip. Also the timing requirements make it
unlikely that a regular SD storage card will work for us here.1 Rather, we need
a real SPI flash chip located on the trusted stick, or better: an FPGA-based
implementation.2

Also it does not seem trivial to use the same one SPI chip to both serve the
firmware (i.e. ME, BIOS, other) to the host processor, and at the same time to
also act as a flash provider to the EC, and optionally also to the internal disk.
The primary reason for this might be lack of a good multiplexing mechanism built
into the SPI protocol. This seems, however, merely a technical complication that,
in the worst case, could be resolved by having the Trusted Stick exposing two

1Which otherwise sounds like a great solution, at least for prototyping, as most of these
cards should be implementing the simple SPI protocol.

2The reason to use an FPGA-based implementation of an SPI flash is transparency, required
to assure that our Trusted Stick indeed implements read-only protection for certain parts of
the flash, as well as reliable encryption for other partitions, as discussed earlier in the paper.

32

State considered harmful Chapter 8. Select implementation considerations

separate SPI interfaces: one for the host processor, another to the EC uC. Of
course, such an approach is far from ideal, as it increases the amount of signals
required for the port to which the Trusted Stick is inserted.3 As mentioned
earlier, a temporary solution might be to use a uC with OTP memory for firmware
storage.
It’s also not yet clear if the Intel ME (which is part of the processor) would be
happy when being put into an environment where the SPI flash it gets access
to is externally forced to be read-only. Should this be the case, it might be
necessary for the Trusted Stick to allow selective write-access for the ME partition
accesses. In that case this region should be encrypted by the Trusted Stick, as
already discussed earlier. This is to assure that in case the processor wanted to
store some user-compromising secrets there, these secrets would not fall into the
hands of an adversary. While this solution might seem simple enough, a slight
complication might arise from the inability to ask the user for a passphrase (at
least using the standard keyboard) upon early platform boot. In that case we
would likely need to use a key kept on the Trusted Stick which is not conditioned
on user passphrase to protect these partitions. It might be even possible to use
auto-generated, discard-able keys for this purpose. Further research is needed.

Host OS implementation considerations

As previously noted the host OS should be engineered so that it was able to boot
and operate efficiently from read-only storage. This is generally not a problem
today: many Linux distributions support such a mode of operation (LiveUSB).
It does however present some challenges for systems which aggressively try to
decompose their TCB, such as Qubes OS [16]. Such systems would like to keep
all the USB subsystem, drivers, and devices into separate de-privileged domains
(VMs). In order to keep such USB-hosting domain(s) truly untrusted, while at
the same time use it as a provider (backend) for the system root storage, special
additional mechanisms would have to be used [12]. This complication could be
avoided, however, when an internal trusted disk was used on the stateless laptop.

3And we would like to keep these down to a minimum in order to be able to re-use existing
USB or SD ports.

33

State considered harmful Chapter 8. Select implementation considerations

User partition encryption considerations

It seems tempting to delegate the user partition encryption to the host – after all
it runs the user approved trusted code from the stick’s read-only partition, while
at the same time this simplifies the construction of the stick significantly.
Unfortunately, running the encryption on the host processor we’re exposing it to
potential malicious interference from the ME processor. The ME can e.g. steal
the encryption key from the host registers or memory pages and then try to leak it
through some of the user networking activity, although this might be very difficult
in practice as discussed earlier in the paper. What the ME can do, however, and
very simply, is to store some of the leaked user sensitive information (such as the
email private keys) on the user private partition without encrypting them with
the user key, but rather with some other key. This would then look like random
garbage for the user, if they ever decided to examine the sectors on the partition.
But for the attacker who (physically) obtains access to the user stick this might
be immediately readable.
On the other hand, if it was the Trusted Stick that performed the encryption,
then there should be no way for the hypothetical ME rootkit to write anything
onto the user partition bypassing the forced encryption with the user key.

Temper-resistance considerations

The use of tamper-resistance technology is often thought as a beneficial means to
improve physical security of an endpoint device. Care must be applied however as
to whether this does not compromise the ultimate trustworthiness of the product.
In the author’s opinion it is unacceptable for any code, that the user is forced
to entrust their digital life to, to be tamper-proof-protected if that results in an
inability for the user to dump and analyze the code that runs on the device at
any time the user feels a need to do that.4

Thus a temper-proof mechanism might only be acceptable for the actual (small)
persistent memory which holds the bits of the user keys, and for nothing more,
particularly not for the memory which holds the firmware for the device. Also,
any tamper-proof protection on volatile memory (RAM) is not necessary, as such
protection only makes sense if the threat model assumes the legitimate user to

4And it is completely irrelevant whether the user would, in practice, be willing or capable
to do that or not – it’s a matter of having an opportunity to do that. This is very similar to
guarantees of civil liberties, such as free speech.

34

State considered harmful Chapter 8. Select implementation considerations

be a potential attacker. This admittedly is the case for various Digital Rights
Management (DRM) or payment processing systems. For these systems the end
user is considered a potential enemy, who might want to illegally make a copy
of a movie, or clone credit card information. Indeed, only then the device would
like to protect its runtime processing. Otherwise an attacker who managed to
steal the device would not be able to get it to start doing the processing of
sensitive data in its RAM, without providing a proper unlock password or key in
the first place. It’s worrying that the industry has been aggressively advertising
various DRM-friendly technologies as protecting the user, while in fact they have
an opposite effect, degrading trustworthiness of the user devices (from the user
point of view, that is).
An exception would be a tamper-proof design which allowed for reliable read-only
access for all the firmware (and preventing access only to key-holding storage),
but it seems like existing devices (specifically microcontrollers) do not support
such a mode today, at least the author is not aware of any.

35

Chapter 9

Alternative solutions?

Many people voice concerns that perhaps a much better strategy is to ditch the
(Intel) x86 platform, and look for an alternative architecture as a foundation for
secure and trustworthy personal computers. . . In this chapter we quickly review
what options we might have, in practice, here.

ARM-based platforms?

The ARM architecture [17] seems like a natural candidate to replace x86 for desk-
top computers, including laptops. Indeed it has already dominated the smart-
phone and tablet markets, and it doesn’t seem like the gap in performance is that
great between these devices. This indeed might seem like a plausible direction
at first sight, but there are at least two problems here:
First, there is no such thing as an “ARM processor” – rather ARM releases only
a set of specifications and other IP, which are then licensed by various vendors,
such as NVIDIA, Samsung, Texas Instruments, and so forth. These vendors then
combine the licensed ARM IP with their own, creating unique final products: the
actual processors, customary called System-on-Chips (SoCs).
This large diversity of “ARM processors”, while undoubtedly beneficial in some
aspects, is also problematic – e.g. it presents multiple research targets for security
researchers, as well as for system architects and developers. E.g. some of the
SoCs would implement IOMMU functionality adhering to the ARM-published
specification, while others would use a completely different technology, invented
by the OEM that makes the SoC [4].

36

State considered harmful Chapter 9. Alternative solutions?

Also, most of the ARM-based SoC’s implement a so called TrustZone (TZ) ex-
tension. Of course, as with most technologies on ARM, TZ is just a specification
and not malicious in itself. However, it opens a possibility for the vendors who
produce TZ-compatible SoCs (which most do) to lock down their processor so
that their TZ implementation will not differ significantly from Intel ME.
Also, there is nothing special in ARM-based architecture that could prevent a
vendor from introducing backdoors into the SoCs they produce.

FPGA-based, true open source processors and
platforms?

There are also efforts to create a fully open processor design ([1], [2]). This surely
is the proper way to go for our civilization, long term. The important question is
how much time it would take for such processors to become performant enough
for typical desktop workflows (e.g. watching HD movies, running modern Web
browsers or an office suite)?
But performance is only part of the story – another question relates to se-
curity technologies these processors should be offering? Technologies such as
e.g. IOMMU and potentially also CPU and memory virtualization?1

Sadly, it seems like we’re at least years away from having consumer-grade lap-
tops based on such processors, and perhaps more than a decade from having
these systems offering isolation technologies on par with what the current Intel
processors offer.

1Arguably virtualization technologies might not be needed for such new processors. On
the other hand, it might turn out more practical to port e.g. the existing Linux kernel and
recompile many of the currently used POSIX applications for these new processors, than to
write everything from scratch. In that case we would need virtualization in order to implement
reasonably strong compartmentalization.

37

Chapter 10

Summary

Personal computers have become extensions of our brains. This symbiosis is
only going to strengthen in the years to come, and not just metaphorically! The
author believes it should be paramount for humankind to ensure we can trust
our personal computers. Unfortunately the industry does not seem to share this
opinion. Not only do we not see much effort to create secure and trustwor-
thy hardware and Operating Systems, but we also witness the introduction of
technologies, such as Intel ME, that could undermine our trust in computers,
(especially personal computers) more than anytime before.
The strict separation of state-carrying (trusted) element from the rest of the
hardware, proposed in this paper, is an attempt to change this game in favour of
the user. While this solution might appeal to many as simple and elegant, care
should be exercised in understanding various implementation-specific subtleties,
many of which, hopefully, have been discussed in this paper.
The author thinks this clean separation of state might be beneficial not just
for Intel x86 systems, but also for other architectures of our future personal
computers.

38

Credits

I would like to thank the following people for many insightful discussions as well
as for reviewing of this paper: Rop Gonggrijp (especially for turning my attention
to the problem of “state”), Peter Stuge (for sharing his rich hardware expertise),
and Rafał Wojtczuk (for being a great sparring partner in many discussions).

39

Contacting the author

Joanna Rutkowska can be contacted by email at: joanna@invisiblethings.org

Her personal master key fingerprint1 is also provided here for additional verifica-
tion:

ED72 7C30 6E76 6BC8 5E62 1AA6 5FA6 C3E4 D9AF BB99

1See http://blog.invisiblethings.org/keys/

40

References

[1] The lowRISC project. http://www.lowrisc.org/.

[2] Open processor foundation. http://0pf.org/.

[3] Jacob Appelbaum. A technical action plan. Video archives for Secu-
rity in Times of Surveillance conference, https://projectbullrun.org/
surveillance/2015/video-2015.html#appelbaum, 2015.

[4] Genode developers. An in-depth look into the ARM virtualiza-
tion extensions. http://genode.org/documentation/articles/arm_
virtualization, 2015.

[5] Google Chromium Project. Chromium embedded controller (EC) develop-
ment. https://www.chromium.org/chromium-os/ec-development.

[6] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clark-
son, William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Ap-
pelbaum, and Edward W. Felten. Lest we remember: Cold boot at-
tacks on encryption keys. In Proc. 2008 USENIX Security Symposium,
https://citp.princeton.edu/research/memory/, 2008.

[7] ENE Technology Inc. KB3930 for OLPC keyboard controller data sheet.
http://dev.laptop.org/~rsmith/KB3930_OLPC_v02_20100503.pdf.

[8] Joanna Rutkowska. Nushu: Passive covert channels implemen-
tation in Linux kernel. Presented at the Chaos Communication
Congress, https://events.ccc.de/congress/2004/fahrplan/files/
319-passive-covert-channels-slides.pdf, 2004.

[9] Joanna Rutkowska. More thoughts on CPU backdoors. The In-
visibe Things Blog, http://blog.invisiblethings.org/2009/06/01/
more-thoughts-on-cpu-backdoors.html, 2009.

41

http://www.lowrisc.org/
http://0pf.org/
https://projectbullrun.org/surveillance/2015/video-2015.html#appelbaum
https://projectbullrun.org/surveillance/2015/video-2015.html#appelbaum
http://genode.org/documentation/articles/arm_virtualization
http://genode.org/documentation/articles/arm_virtualization
https://www.chromium.org/chromium-os/ec-development
https://citp.princeton.edu/research/memory/
http://dev.laptop.org/~rsmith/KB3930_OLPC_v02_20100503.pdf
https://events.ccc.de/congress/2004/fahrplan/files/319-passive-covert-channels-slides.pdf
https://events.ccc.de/congress/2004/fahrplan/files/319-passive-covert-channels-slides.pdf
http://blog.invisiblethings.org/2009/06/01/more-thoughts-on-cpu-backdoors.html
http://blog.invisiblethings.org/2009/06/01/more-thoughts-on-cpu-backdoors.html

State considered harmful Chapter 10. Summary

[10] Joanna Rutkowska. Intel x86 considered harmful. http://blog.
invisiblethings.org/papers/2015/x86_harmful.pdf, 2015.

[11] Joanna Rutkowska and Alexander Tereshkin. Evil Maid goes after True-
Crypt! The Invisibe Things Blog, http://blog.invisiblethings.org/
2009/10/15/evil-maid-goes-after-truecrypt.html, 2009.

[12] Joanna Rutkowska and Rafał Wojtczuk. Qubes OS architecture. http:
//files.qubes-os.org/files/doc/arch-spec-0.3.pdf, 2010.

[13] thaddeus t. grugq. P.O.R.T.A.L.: Personal onion router to assure liberty.
https://github.com/grugq/portal, 2012.

[14] The coreboot project. coreboot: fast and flexible open source firmware.
http://coreboot.org/.

[15] The OpenSSD Project. OpenSSD wiki. http://www.openssd-project.
org/wiki/The_OpenSSD_Project.

[16] The Qubes OS Project. Qubes OS: A reasonably secure desktop os. https:
//qubes-os.org.

[17] Wikipedia. ARM architecture. https://en.wikipedia.org/wiki/ARM_
architecture.

42

http://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
http://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
http://blog.invisiblethings.org/2009/10/15/evil-maid-goes-after-truecrypt.html
http://blog.invisiblethings.org/2009/10/15/evil-maid-goes-after-truecrypt.html
http://files.qubes-os.org/files/doc/arch-spec-0.3.pdf
http://files.qubes-os.org/files/doc/arch-spec-0.3.pdf
https://github.com/grugq/portal
http://coreboot.org/
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project
https://qubes-os.org
https://qubes-os.org
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture

	Introduction
	State(-carrying) considered harmful
	The Stateless Laptop
	State-carrying elements on modern laptops
	The SPI flash chip
	The Embedded Controller's flash memory
	The hard disk
	The trusted internal hard disk requirements
	Other discrete elements
	Other modifications to the laptop
	The wireless devices
	The audio and camera devices
	Volatile memory quick wiping
	Putting it all together

	The Trusted Stick
	Firmware Storage
	Disk Storage
	The variant with internal trusted disk
	Self-destruct

	Addressing leaks through networking
	Scenario 0: An air-gapped system (no network)
	Scenario 1: A closed network of trusted peers
	Scenario 2: Tor-ified or VPN-ed open Internet
	Scenario 3: Unconstrained Internet access?

	(Un)trusting firmware and the host OS
	Firmware considerations
	Host OS considerations
	Reconsidering BIOS and ME (un)trusting?

	Addressing Evil Maid Attacks
	Select implementation considerations
	SPI Flash emulation challenges
	Host OS implementation considerations
	User partition encryption considerations
	Temper-resistance considerations

	Alternative solutions?
	ARM-based platforms?
	FPGA-based, true open source processors and platforms?

	Summary
	Credits
	Contacting the author
	References

